Theory of angular-dispersive, imaging hard-x-ray spectrographs
نویسندگان
چکیده
منابع مشابه
Hard X ray holographic diffraction imaging.
We determine the absolute electron density of a lithographically grown nanostructure with 25 nm resolution by combining hard x-ray Fourier transform holography with iterative phase retrieval methods. While holography immediately reveals an unambiguous image of the object, we deploy in addition iterative phase retrieval algorithms for pushing the resolution close to the diffraction limit. The us...
متن کاملGamma-ray and Hard X-ray Imaging of Solar Flares
We discuss the scientific and technical aspects of high-resolution γ-ray and X-ray imaging of solar flares. The scientific necessity for imaging observations of solar flares and the implications of future observations for the study of solar flare electrons and ions are considered. Performance parameters for a future hard X-ray and γ-ray imager are then summarized. We briefly survey techniques f...
متن کاملX-ray phase-contrast imaging with nanoradian angular resolution.
We present a new quantitative x-ray phase-contrast imaging method based on the edge illumination principle, which allows achieving unprecedented nanoradian sensitivity. The extremely high angular resolution is demonstrated theoretically and through experimental images obtained at two different synchrotron radiation facilities. The results, achieved at both very high and very low x-ray energies,...
متن کاملDevelopment of a hard x-ray imaging microscope
A hard x-ray imaging microscope based on a phase zone plate has been developed and tested. The zone plate, with a 5 cm focal length and a 0.2 pm smallest linewidth, was used to image 8 keV x rays from the samples. The imaging microscope can be used to obtain nearly diffraction-limited resolution over the entire imaging field, and its resolution is almost independent of source size and source mo...
متن کاملHard-x-ray lensless imaging of extended objects.
We demonstrate a hard-x-ray microscope that does not use a lens and is not limited to a small field of view or an object of finite size. The method does not suffer any of the physical constraints, convergence problems, or defocus ambiguities that often arise in conventional phase-retrieval diffractive imaging techniques. Calculation times are about a thousand times shorter than in current itera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2015
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.91.053817